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We studied the phase diagram for a two-dimensional square-lattice d-wave superconducting system under an
exchange field. According to the spatial configuration of the order parameter, we show that the H-T phase
diagram should include the uniform phase, the one-dimensional Fulde-Ferrell-Larkin-Ovchinnikov �FFLO�
state, and the two-dimensional FFLO state. The local density of states are calculated and suggested to be
signatures to distinguish these phases.
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The Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state was
predicted several decades ago by Fulde and Ferrell �FF� �Ref.
1� and Larkin and Ovchinnikov �LO� �Ref. 2� for the super-
conductor in a strong magnetic field, where the supercon-
ducting �SC� order parameter varies periodically in space.
While the occurrence of the FFLO state requires very strin-
gent conditions on the SC materials, namely, the Pauli para-
magnetism effect should dominate over the orbital effect,3

and the material needs to be very clean.4 As a result, this
long thought of inhomogeneous SC state has never been ob-
served in conventional superconductors.

For layered systems with an exchange field or a
magnetic field parallel to the SC plane, the orbital ef-
fect will be suppressed strongly due to the low di-
mensionality. Thus they could be strong candidates to
look for the FFLO state. Actually, in the past de-
cade, indications for possible FFLO state have been re-
ported in the heavy fermion materials CeCoIn5,5–7 organic
superconductors �-�BETS�2GaCl4,8�-�BETS�2FeCl4,9,10 and
�-�BEDT-TTF�2Cu�NCS�2.11,12 All of them are quasi-two-
dimensional �2D� layered compounds. The experimental de-
velopments have attracted renewed interest on the property
of the FFLO state. Theoretically, the existence and the
character of the FFLO state can be investigated through
analyzing the free-energy function of different gap struc-
tures. Alternatively, one can obtain the order parameter self-
consistently based on the Bogoliubov-de-Gennes �BdG�
technique or Eilenberger equation. In fact, in the past, the
FFLO state has been studied intensively based on the above
techniques.13–26 One intriguing question is the detailed gap
structure in the FFLO state. Up to now it is still an open
question and different groups have claimed different results.
For a 2D isotropic system and s-wave pairing symmetry,
different periodic gap structures, i.e., one-dimensional �1D�
FF state ���eiqr�, 1D LO state ���cos�qr��, and 2D states
with square state, triangular state, and hexagonal state, were
proposed in Ref. 16. In their calculation, the gap structure
depended on the temperature and the 2D structure was fa-
vored over the 1D structure at high magnetic field and low
temperature. Later, Mora, and Combescot proposed that the
gap structure could be written as the superposition of the
plane waves with the number of the plane waves tending to
be infinity as the temperature tended to be zero.17 A recent
paper plotted the H-T phase diagram for the 2D isotropic

systems. The 1D FFLO state and 2D FFLO states with
square, triangular, and hexagonal patterns were shown in the
diagram, where the structure transition in their results was
induced by the exchange field H. While the structure they
obtained depended weakly on the temperature T.18 On the
other hand, for a d-wave pairing symmetry, Ref. 16 sug-
gested that the 2D gap structure was favored at high mag-
netic field and low temperature. It was also stated in Ref. 19
that the 2D gap structure was the only stable solution in
d-wave pairing symmetry superconductors. However, it was
proposed that the phase diagram included different 1D stripe
states with the orientations of the stripe along parallel and
diagonal directions, respectively.15 For the crystal system
with square lattice, based on the BdG technique, a 1D stripe-
like pattern for s-wave pairing symmetry was proposed.21,22

For 2D d-wave superconductors, it was proposed21 that the
order parameter had a 2D checkerboard pattern. Further-
more, in the presence of dilute impurities, the pattern of the
FFLO state became 1D stripelike in a 2D d-wave
superconductor.25,26 This implies that the 2D and 1D FFLO
states may be present in the 2D square-lattice system in dif-
ferent parameter region.

Summing up all the previous theoretical results, the gap
structure of the 2D superconductors is still unclear, for both
isotropic superconductors and lattice systems, for both
s-wave and d-wave pairing symmetries. The calculations
based on the lattice model are relatively less while on the
other hand, the FFLO states are most possible to occur in the
lattice system �e.g., CeCoIn5 and certain organic supercon-
ductors�. Up to now, a systematic investigation for the gap
structure in the 2D d-wave square-lattice system is still lack-
ing. The motivation of the present work is to fill this void
and calculate the spatially distributed order parameter self-
consistently based on the BdG equations on a 2D d-wave
square lattice. The whole H-T phase diagram is constructed.
We verify numerically that the gap structure in the FFLO
state for 2D d-wave square-lattice samples is not always sim-
ply 2D. Previous calculations based on BdG technique21,25

focus on higher exchange field, thus an additional region,
i.e., 1D FFLO state was omitted. At zero temperature, the
pattern changes from the uniform state to the 1D FFLO state
and then to the 2D FFLO state as the strength of the ex-
change field increases. The periodicity of the 1D and 2D
FFLO states decreases as the exchange field increases. At
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finite temperature, the 1D FFLO state will transit to the uni-
form phase upon increasing the temperature. Thus near the
SC transition temperature, only uniform phase and 2D FFLO
state are observed. The local density of states �LDOS� for the
above states are also calculated and they provide definitive
signatures for the above-mentioned FFLO states. In addition,
our numerical study indicates that for a 2D s-wave supercon-
ductor in the square lattice, the FFLO state is always 1D like
and no 2D pattern could be obtained, this conclusion is con-
sistent with that of Refs. 21 and 22 and the result will not be
presented here.

We start from a phenomenological tight-binding model
with the Zeeman splitting effect caused by an exchange field
or in-plane magnetic field. On a two-dimensional square lat-
tice with a pairing interaction V between the nearest-
neighbor sites, the mean-field Hamiltonian leading to the
d-wave superconductivity can be written as

H = − �
ij�

�tijci�
† cj� + H.c.� − �

i�

�� + �h�ci�
† ci� + �

ij

��ijci↑
† cj↓

†

+ H.c.� , �1�

where tij are the hopping constants and � is the chemical
potential. �h=�g�BH �g and �B are the Lande factor and
Bohr magneton, respectively� is the Zeeman energy term,
caused by the interaction between the magnetic field and the
spins, with �= �1 representing for spin-up and spin-down
electrons, respectively. The orbital effect, �which is sug-
gested to exist in layered compounds CeInO5 by Ref. 27� is
neglected here. The SC order parameter has the following
definition: �ij =V�ci↑cj↓−ci↓cj↑� /2.

This Hamiltonian can be diagonalized by solving the BdG
equations,

�
j
	Hij �ij

�ij
� − Hij

� 
	uj↑
n

v j↓
n 
 = En	ui↑

n

vi↓
n 
 , �2�

where Hij is expressed by

Hij = − tij − �� + �h��ij . �3�

The SC order parameter and the local electron density ni
satisfy the following self-consistent conditions:

�ij =
Vij

4 �
n

�ui↑
n v j↓

n� + uj↑
n vi↓

n��tanh	 En

2KBT

 , �4�

ni = �
n

�ui↑
n �2f�En� + �

n

�vi↓
n �2�1 − f�En�� . �5�

Here f�x� is the Fermi distribution function.
In a self-consistent calculation, the BdG equations �Eq.

�2�� are diagonalized with a set of random distributed initial
values of the order parameter �ij and the on-site electron
density n�i�. The new values of �ij and n�i� are calculated
from Eqs. �4� and �5� and used as input parameters for the
next iteration step. Such procedure is repeated until the de-
sired convergence criterion is satisfied. For the nearest-
neighbor attracted interaction we adopted, both extended
s-wave and dx2−y2-wave pairing symmetries are possible
stable solutions. Which solution is more favorable may de-

pend on the band structure. In the present work, we have
carried out extensive calculations with different initial values
of the input parameters. The order parameters we obtained
have always the same magnitude and opposite signs along x
direction and y direction, corresponding to the dx2−y2-wave
pairing symmetry. We define the magnetization mi and the
d-wave SC order parameter �i as mi= �Sz�= �	 /2��ni↑−ni↓�
and �i=1 /4��i,i+x̂+�i,i−x̂−�i,i+ŷ −�i,i−ŷ�.

The LDOS is expressed by


i��� = �
n

��ui↑
n �2��En − �� + �vi↓

n �2��En + ��� , �6�

where the delta function ��x� is taken as � /�x2+�2� with
�=0.01. The supercell technical is used to calculate the
LDOS.

In the following calculation, we take the hopping constant
tij to be unity for nearest neighbors and zero otherwise. The
pairing potential V and the filling electron density n are cho-
sen as V=1.3 and n=0.84 �hole-doped samples with doping
�=0.16�, respectively. The calculation is made on 48�48
lattice with periodic boundary condition and random distrib-
uted initial values of the order parameters are chosen. The
10�10 supercell is used to calculate the LDOS.

Before presenting our results, it is important to point out
the limitations of the present model. The finite-size effect
constrains our results are effective only when the exchange
field is not too weak. Some of solutions are perhaps not
obtained due to the finite-size effect and the periodic bound-
ary condition we adopted. We also stress that the results we
obtained is not necessarily the same with those based on the
continuum model, although we wish that our calculations
could be complementary to existing continuum model stud-
ies.

We summarize our main results in Fig. 1, as seen, the H-T
phase diagram is plotted. At zero temperatures two critical
Zeeman fields h1=0.14 and h2=0.23, are revealed. The
whole SC state is divided to be three regions, namely, uni-
form d-wave SC state, 1D FFLO state, and 2D FFLO state,
respectively. The periodicity will decrease as the magnetic
field increases in both 1D and 2D FFLO states. As h�0.28,

FIG. 1. H-T phase diagram of the two-dimensional d-wave su-
perconductor in the parallel magnetic field. h=g�BH is the ex-
change field. Tc0�0.19 is the SC transition temperature in zero
field.
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the SC phase will be destroyed completely. The periodicity
of the 1D FFLO state also increases as the temperature in-
creases, and it will transit to the uniform state as the tem-
perature increases further. As a result, the range of the FFLO
phase will decrease upon increasing the temperature. Near
the SC transition temperature, only uniform d-wave phase
and 2D FFLO phase were observed, with the transition field
at about h=0.225.

The calculated order-parameter amplitudes and the mag-
netization for various Zeeman fields h with the temperature
T=10−5 are shown in Figs. 2�a�–2�j�. The order parameters
are plotted in left panels. As seen, for weaker magnetic field,
the order parameter is uniform �Fig. 2�a��. The magnitude of
the order parameter �0 equals to 0.106 at zero field. It de-
pends weakly on h at low fields and equals to 0.1056 as h

=0.13 �Fig. 2�a��. When the Zeeman field increases further,
as we can see from Figs. 2�b� and 2�c�, the SC order forms
the stripe pattern. The order parameter is of nearly cosine
form with the periodicity of about 48 along x direction as
h=0.16. We have verified numerically that the periodicity is
kept to be 48 for 0.14�h�0.175. And the periodicity re-
duces to 24 as h increases �0.175�h�0.23�. Here the finite-
size effect prevents us from obtaining solutions with period-
icity not commensurate with the lattice size. As h increases
further, the pattern changes to two dimensional and a
supersquare-lattice forms, with the periodicity decreases as h
increases, which can be seen clearly from Figs. 2�d� and 2�e�.

The spatial distributions of the magnetization �with the
units 	� are shown in Figs. 2�f�–2�j�. As seen in Fig. 2�f�, in
the uniform phase, the distribution is also uniform. The mag-
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FIG. 2. �Color online� Plots of the order parameter � �left panels� and the magnetization mi �right panels� as a function of position for
various Zeeman fields h with T=10−5.
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netization is suppressed strongly by the SC order, as a result,
it is quite weak ��0.0015� for small exchange field �h
=0.13�. We also checked numerically �not presented here�
that the magnitude will increase to about 0.025 in the normal
state for the same magnetic field �h=0.13�. In the 1D FFLO
state, as seen in Figs. 2�g� and 2�h�, the intensity is largest
along the nodal lines and is suppressed when the SC order
parameter increases. It reaches the minimum value as the SC
order is maximum. The pattern also forms 1D stripe but the
periodicity is one half of that of the order parameter. In the
2D FFLO state �Figs. 2�i� and 2�j��, the structure of the mag-
netization forms the checkerboard pattern. Similar to the case
of 1D FFLO state, the intensity of magnetization is largest at
the nodal lines and minimum as the SC order is maximum.
The periodicity along the parallel direction is the same as
that of the order parameter. While the periodicity along the
diagonal direction is only one half of that of the order pa-
rameter.

Our results of the phase diagram and order-parameter
structure shown in Figs. 1 and 2 are different with previous
analytic calculations on both d-wave and s-wave 2D isotro-
pic superconductors.13–19 For instance, based on the con-
tinuum model and taking into account the d-wave pairing
symmetry, it was proposed that the FFLO momentum could
change from 0 to � /4, dependent on the exchange field
and the temperature.13–15 In real space, the different FFLO
momentum corresponds to the different orientations of the
stripes or supersquare lattice in the FFLO state. However,
our present results are significantly different, i.e., the small-
est periods of the order parameter are always along the unit-
cell direction for both 1D FFLO state and 2D FFLO state,
independent of the temperature and the exchange field. On
the other hand, our results also show some similarities with
those based on the continuum model, e.g., at higher tempera-
ture near the SC transition temperature, the results are some-
what consistent with Maki and Won’s calculation,19 i.e., the
prime FFLO state has 2D structure, no 1D state was ob-
served. At low temperature, the results are somewhat consis-
tent with the recent proposed phase diagram,18 namely, the
energy favored state transforms from the uniform state to 1D
FFLO state then to 2D FFLO state as the exchange field
increases. However, here no triangle and hexagonal states
were obtained. The absence of these two states is due to the
system’s symmetry. In fact, the phase transition in
condensed-matter physics will relate to the symmetry break-
ing. The order parameter is a description of the lowered sym-
metry in the ordered state. The symmetry group describing
the SC state must be a subgroup of the full symmetry group
G describing the normal state,28

G = X � R � U�1� � T , �7�

where X is the symmetry group of the crystal lattice, R is the
symmetry group of spin rotation, U�1� is the one-
dimensional global gauge symmetry, and T is the time-
reversal symmetry operation. For the square lattice, the sym-
metry group of the crystal lattice should have the point-group
symmetry with D4h. The spin-rotation symmetry R will be
broken by the exchange field. The symmetry groups of both
1D FFLO state and 2D FFLO state with square superlattice

are subgroups of D4h, thus these two states can survive for
the square crystal lattice. However, the 2D FFLO states with
triangle and hexagonal superlattice contain the symmetry op-
erator which are not belong to the D4h group, as a result, they
could not exist in the square crystal lattice. While on the
other hand, they may exist in triangle crystal lattice and hex-
agonal crystal lattice, respectively. A systematic comparison
for the differences and similarities of the FFLO states in
lattice systems and isotropic systems with different pairing
symmetries still needs further study. Here we will focus on
discussing the property of the obtained states.

We now turn to study the LDOS spectra. The LDOS �Eq.
�6�� can be written as 
i=
i↑+
i↓. Here 
i↑ and 
i↓ are, re-
spectively, the spin-up and spin-down parts of the LDOS.
These two parts are exactly the same if the Zeeman field is
absent. In presence of the Zeeman field, the spin-up LDOS
shifts to left and the spin-down LDOS shifts to right. In Figs.
3�a�–3�f�, we plot the two parts of LDOS separately to dis-
cuss the properties of the LDOS. The whole LDOS spectra
are also plotted so that the results can be compared with
scanning tunneling microscopy �STM� experiments.

The LDOS spectra in the uniform phase are shown in Fig.
3�a�. As seen, the spin-up LDOS shifts to the left with the
midgap point locating at �=−h. The SC coherent peaks shift
to ��0−h. The spin-down LDOS shifts to the right with the
SC coherent peaks at ��0+h. Outside the gap we can see
the Van Hove peak. As a result, the whole LDOS spectrum

FIG. 3. �Color online� The LDOS spectra for different phases.
Panel �a� is the LDOS in the uniform phase with h=0.13. Panels �b�
and �c� are the spectra in the 1D FFLO phase with h=0.16 at the
nodal line and at the site where the order parameter is maximum,
respectively. The right panels are the spectra in the 2D FFLO phase
with h=0.235, where �d�–�f� are the spectra at the saddle point
where two nodal lines intersect, the midsite between two neighbor-
ing saddle points, and the site where the order parameter has the
maximum magnitude, respectively. The �blue� dotted line, �red�
dashed line, and the �black� solid line are spin-up LDOS, spin-down
LDOS, and whole LDOS, respectively.
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contains two stronger peaks at ���0+h� and two weaker
peaks at ���0−h�. The gap structure at low energies is “U”
shaped. The density of states at zero energy 
�0� increases
linear with the external field, indicating the quasiparticle ex-
citations due to the magnetic fields.

The LDOS spectra in the 1D FFLO phase with h=0.16
are shown in Figs. 3�b� and 3�c�. Figure 3�b� is for the site on
the nodal line. We can see very sharp and strong peaks at the
position �h. The SC coherent peaks are suppressed and al-
most invisible. The peak at negative energy comes from the
spin-up LDOS and the peak at positive energy are contrib-
uted by the spin-down LDOS. Taking into account the Zee-
man shift, these in-gap peaks �bound states� at �h locate just
at the midgap position. These bound states are due to the sign
change in the order parameter across the nodal lines and are
related to the Andreev reflections, similar to the midgap
states in d-wave superconductors.29 The intensity of the in-
gap peaks will decrease as the site moves away from the
nodal line. As we can see from Fig. 3�c�, at the site where the
order parameter is maximum, the in-gap peaks are turned to
be a hump at the midgap position for both spin-up and spin-
down LDOS spectra. The SC coherent peaks are seen clearly.
The midgap hump is so weak that it is concealed in the
whole LDOS �
i� spectrum. We can see four peaks at the
energies ����0�h��. And the spectrum of the whole LDOS
is similar to that of the uniform phase while the gap structure
at low energies is not U shaped but “V” shaped due to the
presence of the midgap hump.

At last we plot the LDOS spectra of the 2D FFLO phase
in Figs. 3�d�–3�f�. Actually the features of the spin-up LDOS
spectra are studied intensively in Ref. 21. There are two
kinds of Andreev bound states. One is due to the sign change
in the order parameter across the nodal lines. The second is
essentially localized at the saddle points. The order param-
eter is suppressed strongly in an intersecting region, which

produces a potential well for a quasiparticle and thus gener-
ates two finite-energy Andreev bound states. As a result, at
the saddle points, four in-gap peaks exist in the spin-up
LDOS spectra �Fig. 3�d�� at the energies −0.575, −0.385,
−0.08, and 0.105. And midgap peaks exist between two
neighboring saddle points �Fig. 3�e��. At the site where the
order parameter is maximum, the LDOS spectrum �Fig. 3�f��
is similar to that of the 1D FFLO state �Fig. 3�b�� and that of
the uniform phase, namely, if the Van hove peaks and the
weak peak caused by the midgap hump are excluded, there
are only four peaks left, locating at ���0�h�, contributed
by the spin-up and spin-down LDOS, respectively.

We have shown the LDOS spectra of the three different
phases. As seen in Figs. 3�a�–3�f�, the spectra are quite dif-
ferent and the spectra in each phase have their distinctive
features as we discussed above. Thus they can be easily de-
tected by the STM experiments and can be used as signatures
to probe the FFLO states.

In summary, based on a BCS-type model and BdG equa-
tions, we studied the phase diagram and the order-parameter
structure in presence of the external exchange field. The
phase diagram is mapped out and it includes the regions of
uniform phase, 1D FFLO state, and 2D FFLO state, respec-
tively. We also calculate the LDOS to discuss the signatures
of the three phases, namely, the LDOS spectra in the uniform
phase will contain four peaks due to the Zeeman shift. In the
1D FFLO state, the LDOS spectra show midgap states due to
the Andreev reflection. In the 2D FFLO states, four in-gap
peaks are revealed at the saddle point due to two kinds of
Andreev bound states. Thus in each states the LDOS has its
unique feature and may be used as powerful tools to distin-
guish these states.

This work was supported by the Texas Center for Super-
conductivity at the University of Houston and by the Robert
A. Welch Foundation under the Grant No. E-1146.
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